Building Wide-Area Networks with BACnet® -Part 1

 

By Bill Swan, Alerton

 
There are devices and methods by which BACnet networks can be interconnected over Internet Protocol, wide-area networks. The first of two parts, this article looks at network basics, the use of IP internets to connect systems, and BACnet/IP PAD devices.

New technologies create demands for new capabilities. BACnet is no exception.

 
Initially envisioned as a building-wide network protocol, BACnet (ANSI/ASHRAE Standard 135-1995, Building Automation Control Network) is now being used to join buildings together on campus-wide internetworks. And there is increasing demand to interconnect BACnet systems across cities, regions, countries, and even continents.

 

In nearly all cases, the desire is to use an existing Internet Protocol (IP), wide-area network (WAN) already spanning the area to join the BACnet systems. However, BACnet devices and IP devices speak different protocols, different languages; one cannot simply plug them into the same network and expect them to work.

 

Special devices are required in order for BACnet messages to be transported across IP networks to BACnet devices in distant locations. These devices, described in the standard, are already in use.

 

Last year, for instance, BACnet networks at the Phillip Burton Federal Building (San Francisco), Cornell University (Ithaca, NY), and the National Institute of Standards and Technology (Gaithersburg, MD) were all joined together over the Internet, in a public demonstration of a very wide area BACnet system indeed.

 
The following is a look at the devices and methods by which BACnet networks are interconnected over IP WANs.

 

INTERNETWORKING AND ROUTERS

 

It is often necessary to set up multiple networks to communicate with each other. This may be required because different network types with different characteristics are being used.

 

For example, Ethernet, which is frequently used in building automation systems (bas), works well as a building-wide network, but it cannot span a continent. Other network technologies must be used for such long distances. Thus, multiple networks must be used if buildings in distant locations are to be joined in a single system.

 

For multiple networks to communicate, there must be a common language or protocol used by the devices on those networks. For BACnet devices, the protocol is BACnet.1 For IP networks, of course, it is the underlying protocol used by the Internet itself, as well as by many private networks.

 

The protocol defines the format of the message packets exchanged between devices. It also defines the format of the message frame, the surrounding envelope that determines what destination address should be used, and what protocol the frame is using.

 

Some protocols, such as BACnet, define the entire frame and packet together. Other protocols, such as IP, can state within the frame that a different protocol is to be used to decode the packet within.

 

When multiple networks using the same protocol for their packets are joined, the result is called an internetwork.2 (It is also called an "internet," but that term is too easily confused with the Internet, the best-known internetwork.) Internetworks can also be created with multiple networks using different protocols if a device called a protocol converter, also known as a gateway, is used to translate the messages going back and forth.

 

The devices that join the networks of an internetwork are known as routers. Unlike most devices that connect to a single network, routers connect to two or more networks for the purpose of forwarding messages sent by a device on one network and destined for a device on another network.

 

In complex internetworks, a message may have to be forwarded through several routers and across several networks before reaching its destination.

 

A router must be able to understand the frame's protocol in order to determine whether or not a message is destined for another network. If the message is destined for a device on the same network, the router must not pass it on; doing so would flood the rest of the internetwork with extraneous messages. Thus, BACnet routers must understand BACnet frames and IP routers must understand IP frames.

 
BACnet internetworks that are connected only by routers that understand BACnet frames are defined here as directly connected internetworks. (In Figure 1, networks 102 and 103, but not 101, comprise a directly connected internetwork.) This distinguishes them from the super-internetworks, serving to join multiple directly connected internetworks, which can be created by devices that allow BACnet packets to be carried within IP frames.
 

 

FIGURE 1:  A physical BACnet internetwork using PADs.

 

THE PROBLEM AND ITS SOLUTIONS

The problem one encounters when trying to connect the component BACnet networks (or directly connected BACnet internetworks) of a wide-area BACnet internetwork together over an IP wide-area network, is that IP routers do not understand BACnet frames.

If an IP router has a connection to a BACnet network and receives a BACnet frame that needs to be delivered to another network, it will do...nothing.3

The problem is solved with special kinds of BACnet devices that also understand the IP protocol. Such a device is able to take a BACnet message and enclose it within an IP frame that an IP router can read and deliver across an IP internetwork.

At the destination, another such BACnet device extracts the BACnet message from the IP frame, reads it, and forwards it if necessary.

Annex H.3 of the original BACnet standard describes this technique known as "tunneling," by which devices called B/IP PADs (BACnet/Internet-Protocol Packet-Assemblers-Disassemblers), also known as Annex H.3 devices, act like routers to transport BACnet messages across IP internetworks.

A recent addition to the BACnet standard, Annex J-BACnet/IP, describes a flexible extension of the original concept. It even includes descriptions of BACnet/IP devices that always enclose their BACnet messages within IP frames.

BACNET/IP PADS

To connect BACnet networks over IP networks, a special kind of router called a BACnet/IP PAD (BACnet/Internet-Protocol Packet-Assembler-Disassembler) is placed on every BACnet network (or directly connected internetwork) that is to be connected over an IP network to another BACnet network. The PAD need not be a physically distinct device; it can be part of a device that performs other operations, such as a building controller.

The PAD acts like a BACnet router. When it receives a BACnet message destined for a distant BACnet network, a network reachable only through an IP internetwork, it wraps the message inside an IP frame, gives the frame the destination IP address of the corresponding PAD on the destination BACnet network, and sends the frame on its way over the IP network.

The receiving PAD removes the BACnet message from its IP frame and transmits the message to the destination device on the local LAN, just as if it had come from a BACnet router.

The BACnet devices originating and receiving the messages are unaware of the special operations used to deliver the messages. They communicate with the PADs as if the PADs were ordinary BACnet routers connecting BACnet networks.

Two configurations of PADs exist, as shown in Figure 1. The first has a single physical network connection, or port, typically to an Ethernet network, through which both BACnet and IP frames are transmitted and received.

It requires an IP router to be connected to this network in order to have its IP frames delivered to the distant PAD. (The PAD may also have other BACnet-only ports.)

The second PAD configuration has different ports for BACnet and IP frames. The IP port may thus be directly on the IP internetwork connecting the BACnet networks. Typically, the PAD appears to the IP internetwork as a device communicating using IP, not as an IP router.

VIRTUAL NETWORKS

 

Depending upon the implementation, a set of intercommunicating PADs can look to devices on the BACnet networks like a single physical router with a port on each of the BACnet networks to which it is connected.

 
 
The IP routers and networks that participate in the communications are completely invisible to the BACnet devices.

 

 

FIGURE 2:  A virtual BACnet internetwork using PADs.

In a different implementation, the PAD devices will instead appear to the BACnet networks as BACnet routers directly connected by a single network. This network is called a "virtual network" because it will usually be an internetwork composed of multiple IP networks instead of a single physical network.

Figure 1 shows the physical implementation of such an internetwork. Figure 2 shows the internetwork, including the virtual network, as it appears to the BACnet devices.

One significant difference between PADs and other BACnet routers is the way global (internetwork-wide) broadcasts are handled. Other routers rebroadcast the message on all networks other than the one the message came from, but a PAD sends a separate IP frame to each of its peer PADs.

This avoids the use of broadcast IP frames, a practice frowned upon by many network administrators. It also requires that the PAD keep a table of its peers' IP addresses.

Careful attention must be paid to certain BACnet rules when constructing a wide-area BACnet internetwork. Parameters that are required to be unique across a BACnet internetwork (such as every device object's Object Identifier, Object Name properties, and network numbers) must remain unique when already-operating networks are subsequently interconnected via a wide-area IP network. Failure to follow this rule is a common source of trouble.

One of the most critical BACnet rules to be obeyed is that there must be only one path across the internetwork for BACnet frames to traverse between any two devices. This means there cannot be more than one PAD device connected to a directly connected BACnet internetwork (unless each PAD is on a different virtual network, as explained later).

This path restriction does not apply to the IP frames transferred between PADs. There may, for example, be more than one IP router connecting the BACnet network to the IP Internet and basic PAD devices may take advantage of this fact, automatically rerouting their IP frames through the secondary IP router if the primary IP router fails.

CONFIGURING A PAD

Configuring a PAD device seems complex because of the number of IP parameters that need to be entered, but in fact, nearly all the parameters should be provided by a network administrator responsible for the IP internetwork. The only non-IP parameter is the BACnet network number to be assigned to the virtual network. Depending upon their implementation, some PADs might not have this parameter.

A representative PAD device setup menu is shown in Figure 3. The device menu in Figure 3 shows that PAD devices have fixed (assigned) IP addresses, unlike many devices that can be assigned an IP address automatically upon each startup by a server on the IP network.

Although this makes for more work for the network administrators, it is necessary; without fixed addresses, there is currently no means for the B/IP PAD devices to locate each other without broadcasting queries.

Figure 4 shows the relationship between a PAD's IP address parameters and the configuration of an actual network. The IP addresses are shown in the common "dotted quad" form: four decimal numbers, each in the range from 0 to 255, separated by periods. These numbers represent the four bytes of the actual IP address.

MULTIPLE VIRTUAL NETWORKS

 
 

 

PAD devices will have a limit to the number of other PADs with which they can communicate, due to restrictions on memory and the communications bandwidth. If the PADs will talk to, say at most, 31 other PADS, only 32 directly connected BACnet internetworks can be joined by a single virtual network.

 
This does not place a limit on the total number of BACnet networks that may be joined over IP internets, however. Multiple virtual nets may be constructed and connected to create a "super" virtual internetwork.

 

 

Field Options/ranges Description
IP Comm: DIX DIX or 802.2 * Transmit IP frame type
IP Virt Net: 01000 1 to 65534    Virtual network number
IP TTLive: 064 1 to 255 * IP time-to-live parameter
IP TOServ: 0 0 to 7 * type-of-service parameter
Addr:192.168.001.254   * Device's IP address
Mask:255.255.255.000   * Network subnet mask
Gtwy:192.168.001.010   * Default IP gateway's (router's) IP address
d00 :192.168.004.005   * 1st PAD IP address
---   ---
d31 :192.168.031.212   * 32nd PAD IP address

                                                            * Items provided by network administrator.

FIGURE 3:  A PAD device configuration menu.

Two multiple virtual networks are connected when a PAD device from each of the two virtual networks is placed on the same BACnet network. In Figure 5, for example, virtual network #1 is joined to virtual network #10 by the two PADs on (physical) network #101.

FIGURE 4:  A PAD network configuration.

Sometimes it may be desirable to construct multiple virtual networks where the PAD limitations have not been reached. An example is a wide-area BACnet internetwork joining all the buildings of a number of distant campuses. Each building has its own BACnet network, and has access to its campus-wide IP internetwork; each campus IP internetwork is part of a larger IP internetwork joining the campuses. Each campus can be serviced by a single virtual network, but there are far too many buildings for a single virtual network to cover all buildings in all campuses.

In this scenario, it makes sense to construct a separate virtual network within each of the campuses, and a third virtual network joining the campuses. Figure 5 illustrates this implementation in a two-campus internetwork. Each campus has its own IP internetwork with its own virtual network, #1 and #2 (presumably, there are many more networks in each campus than are illustrated). The two campuses are joined by a third virtual network, #10.

 

 

 

FIGURE 5:  Diagram shows how virtual networks are joined.

 

As with the single virtual network, BACnet rules must be observed throughout the entire BACnet internetwork. Only one PAD device from any particular virtual network may be connected to a BACnet directly connected internetwork.

 

Virtual networks must not be connected so that more than one path through BACnet physical or virtual networks exists between any two BACnet devices. Any failure to observe these rules will be immediately evident as internetwork traffic volumes skyrocket, possibly shutting down the networks, and definitely making some network administrator very unhappy.

 

Next month:  A look at Annex J BACnet/IP devices.

 

FOOTNOTES
1 See "The Language of BACnet," Engineered Systems, July 1996.
2 See "Internetworking with BACnet", Engineered Systems, January 1997.
3 Some IP Routers can be confgured to pass through any message carrying the code identifying it as a BACnet message, but this can result in the IP internetwork being flooded with BACnet messages.

 

Swan is BACnet specialist at Alerton (Redmond, WA).  He can be reached at این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید .  Swan is secretary of the ASHRAE BACnet Standing Committee, SSPC 135, and serves on an ISO Technical Committee (ISO/TC 205/WG 3) developing an international building automation communications protocol.

 

 

 

در حال حاضر میزان درجه حرارت آب گرم چرخشی و آب گرم مصرفی در موتورخانه ها بصورت دستی و تمام تنظیم درجه حرارت ترموستات دیگ و یا پمپهای سیرکولاسیون انجام می گردد و معمولاً برای تمام مدت بر روی یک عدد ثابت قرار دارد. تغییرات دمای هوا درطول روز موجب افزایش یا کاهش دمای داخل ساختمان شده که نتیجه آن انحراف دمای داخل ساختمان از محدوده آسایش و مصرف بیهوده سوخت و انرژی می باشد. همچنین در بسیاری از ساختمانهای غیرمسکونی با کاربری اداری- عمومی- آموزشی- تجاری که از فضای ساختمان بصورت غیرپیوسته و تنها در بخشی از ساعات روز استفاده می گردد و نیازی به کارکرد موتورخانه پس از اتمام ساعت کاری وجود ندارد.
 
روش فعلی تنظیم دستی ترموستات دیگها و پمپها، قابلیت اعمال خاموشی و یا کنترل تجهیزات در وضعیت آماده باش را ندارند.

بنابراین با توجه به عدم کارآیی دقیق و محدودیتهای کنترلی ترموستاتهای دستی، ضرورت استفاده از سیستم های کنترل هوشمند موتورخانه به منظور :

  • راهبری و کنترل صحیح تجهیزات موتورخانه شامل مشعلها و پمپها
  • بهینه سازی و جلوگیری از مصرف بیهوده سوخت و انرژی الکتریکی
  • تثبیت محدوده آسایش حرارتی ساکنین ساختمان
  • کاهش استهلاک تجهیزات و هزینه های مربوطه
  • کاهش هزینه های سرویس- نگهداری تاسیسات حرارتی
  • کاهش تولید و انتشار آلاینده های زیست محیطی

آشکار می گردد.

1. اصول بهینه سازی مصرف سوخت و انرژی توسط سیستمهای کنترل هوشمند موتوخانه مبتنی بر کنترل گرمایش از مبداء و محل تولید انرژی حرارتی (موتورخانه) می باشد. این سیستم با دریافت اطلاعات از سنسورهای حرارتی که در محلهای زیر نصب می گردند :


ضلع شمالی ساختمان جهت اندازه گیری دمای سایه (حداقل دمای محیط خارج ساختمان)

کلکتور آب گرم چرخشی

خروجی منبع آب گرم مصرفی

لحظه به لحظه اطلاعات حرارتی موقعیتهای فوق را اندازه گیری و با تشخیص هوشمند نیاز حرارتی ساختمان تا برقراری شرایط مطلوب در تابستان یا زمستان تجهیزات حرارتی موتورخانه شامل مشعلها و پمپهای آب گرم چرخشی را راهبری می نماید. بدین صورت مصارف گرمایشی (گرمایش- آب گرم مصرفی) نیز متناسب با نوع کاربری ساختمان مسکونی یا غیرمسکونی (اداری- عمومی- آموزشی- تجاری) تامین و کنترل می شود. صرفه جویی مصرف انرژی حاصل از عملکرد سیستم به دو دسته تقسیم می شوند :

کنترل مصارف گرمایشی درزمان استفاده از ساختمان (مسکونی و غیرمسکونی)

خاموشی یا آماده باش موتورخانه پس از ساعت کاری ساختمان های غیرمسکونی (در ساختمانهای اداری-آموزشی- عمومی- تجاری)

هنگام استفاده از موتورخانه در ساختمانهای مسکونی و یا غیرمسکونی و با در نظر گرفتن شرایط کارکرد زمستانی تابستانی و برای کنترل گرمایش، مشعلها و پمپها توسط یک منحنی حرارتی کنترل می شوند. در این منحنی دمای آب گرم چرخشی در تاسیسات، تابعی از درجه حرارت محیط خارج ساختمان می باشد و به صورت لحظه ای و خودکار متناسب با تغییرات دمای خارج ساختمان کنترل می شود و باعث ایجاد دمای یکنواخت در داخل ساختمان می گردد. بدین صورت هنگام گرم شدن دمای محیط خارج ساختمان مشعلها و پمپها به اندازه ای کار می کنند که گرمایش در حد مورد نیاز و در محدوده آسایش حرارتی تامین شود و از تولید بیش از حد حرارت که موجب کلافگی و باز شدن پنجره ها بمنظور تعدیل دمای اتاقها می گردد جلوگیری می نماید.

برای تامین دمای آب گرم مصرفی مطابق با شرایط مطلوب تعریف شده نیز تجهیزات موتورخانه به اندازه ای کار می کنند که تنها دمای آب گرم مصرفی در ساعتهای مورد نظر به حد تعریف شده و مطلوب برسد و نه بیشتر.

در ساختمانهای با کاربری غیرمسکونی نظیر ادارات، مدارس، مجتمع های تجاری و ... نیز بدلیل غیرپیوسته بودن ساعت بهره برداری از ساختمان، سیستم کنترل هوشمند موتورخانه توسط یک تقویم زمانی پس از ساعت کاری و تا زمان پیش راه اندازی موتورخانه در صبح روز بعد، موتورخانه را کاملاً خاموش و یا در وضعیت آماده باش (کنترل دمای آب گرم چرخشی در یک دمای ثابت و پائین) قرار می دهد.

2. ویژگیهای منحصربفرد استفاده از سیستم های کنترل هوشمند موتورخانه در مقایسه با سایر روشهای بهینه سازی مصرف انرژی :


1-2- مستقل بودن عملکرد سیستم از مساحت زیربنای ساختمان:

با افـزایش مساحت زیربنـای ساختمـان، مصرف سوخت و انرژی آن نیز به نسبت ساختمانهای کوچکتر افزایش می یابد و موجب می شود تا اجرای روشهای بهینه سازی مصرف انرژی در ساختمانهای بزرگتر، پر هزینه تر شود. بعنوان مثال درصورتیکه مساحت پنجره های هر ساختمان 15% مساحت کل ساختمان در نظر گرفته شود در یک ساختمان با مساحت 000/10 متر مربع، مقدار و هزینه اجرای پنجره دو جداره 5 برابر مقدار و هزینه اجرای آن در یک ساختمان با مساحت 2000 متر مربع می باشد و به همین ترتیب برای اجرای روشهای دیگری مانند : عایق حرارتی، عایق های حرارتی دیوار و کف و سقف، شیرهای ترموستاتیک رادیاتور.

برخلاف روشهای فوق، سیستم های کنترل هوشمند موتورخانه دارای ویژگی منحصربفرد و متمایز "مستقل بودن عملکرد از مساحت بنای ساختمان" می باشند. به عبارت دیگر در موتورخانه هر ساختمان، صرف نظر از مساحت آن، تنها با نصب یک دستگاه با هزینه ای ثابت و حداقل، موتورخانه هوشمند می گردد. دلیل این ویژگی منحصربفرد در تعداد مشعلها و دیگهای هر موتورخانه است. تعداد و ظرفیت حرارتی مشعلها و دیگهای تاسیسات حرارتی هر ساختمان (مصرف کنندگان سوخت) با مساحت آن نسبت مستقیم دارد و همواره تعداد مشعلها و ترکیب ظرفیت حرارتی آنها به نحوی است که علاوه بر تامین بار حرارتی مورد نیاز ساختمان، موجب افزایش هزینه های اجرایی نیز نگردند. طبق تحقیقات انجام شده در سطح موتورخانه های کشور در بیش از 99% ساختمانهای موجود تعداد دیگها و مشعلها حداکثر 3 دستگاه می باشد. در ساختمانهای کوچک با مساحت زیر 2000 مترمربع، ظرفیت حرارتی مشعلها و دیگها پائین و در حدود kcal/h 150000 – 100000 می باشد و با افزایش مساحت ساختمان با ثابت ماندن تعداد دیگ و مشعل، ظرفیت حرارتی آنها افزایش می یابد و حتی به حدود kcal/h 1000000 و یا بیشتر نیز می رسد.

عملکرد هر خروجی مشعل یا پمپ در سیستم های کنترل هوشمند موتورخانه به شکلی است که بصورت سریال (سری) در مدار برق این تجهیزات قرار گرفته و صرف نظر از ظرفیت جریانی و آمپراژ آنها با فرمان ON/OFF در زمانهای مقتضی آنها را کنترل می نماید.

بنابراین با توجه به توضیحات فوق سیستم های کنترل هوشمند موتورخانه با قابلیت کنترل تا 3 مشعل دارای ویژگی منحصربفرد مستقل بودن عملکرد از مساحت بنای ساختمان می گردند.

2-2- پیک زدایی مصرف سوخت در اوج سرما :

اوج مصرف گاز در فصل سرما از ساعت 17 تا ساعات اولیه بامداد می باشد. این محدوده زمانی مقارن با غروب خورشید و کاهش دمای هوا و نیاز به افزایش فرآیند گرمایشی ساختمان می باشد (افزایش درجه حرارت بخاریهای گاز سوز، افزایش درجه ترموستات دیگ در ساختمانهای دارای موتورخانه مرکزی و یا افزایش تعداد رادیاتورهای فعال در هر واحد ساختمانی). نکته قابل توجه دیگر، زمان پایان ساعت کاری ادارات، مجتمع های عمومی و تجاری و مدارس می باشد که دقیقاً همزمان با ساعت اوج مصرف گاز می باشد. این مهم در کنار قابلیت ویژه و منحصر بفرد سیستمهای کنترل هوشمند که توانایی خاموشی و یا اعمال دمای آماده باش مصرف موتورخانه ساختمانهای غیر مسکونی پس از پایان ساعت کاری را دارند مفهوم ویژه ای را پدید می آورد : پیک زدایی مصرف در اوج سرما از مصرف گاز سالانه تاسیسات حرارتی هر ساختمان در حدود 20% آن مربوط به فصل گرما (متوسط 7 ماه سال) و در حدود 80% آن مربوط به فصل سرما (متوسط 5 ماه یا 150 روز در سال) می باشد.


همچنین در بسیاری از ساختمان های اداری و مدارس، موتورخانه در تابستان خاموش و تنها در زمستان مورد بهره برداری قرار می گیرد. بنابراین در این دسته از ساختمانها عملاً 100% صرفه جویی حاصل از عملکرد سیستمهای کنترل هوشمند موتورخانه مربوط به فصل سرما خواهد بود. که طبیعتاً میزان اثر بخشی آن بر روی جبران پیک مصرف نیز بسیار محسوس و قابل تامل می باشد.

درحدود 80% از حجم گاز صرفه جویی شده حاصل از عملکرد سیستمهای کنترل هوشمند موتورخانه در فصل سرما مربوط به خاموشی یا دمای آماده باش موتورخانه پس از پایان ساعت کاری ساختمانهای غیرمسکونی و از ساعت 17 تا ساعتهای اولیه بامداد می باشد که همزمان با ساعت اوج مصرف گاز است.

پیک های مصرف گاز در ساختمانهای غیرمسکونی و اداری طی دو نوبت یکی صبحها به هنگام شروع کار اداره و دیگری در هنگـام ظهر و موقع نماز و ناهار و استفاده از آب گرم مصرفی می باشد که البته اثرات آن بر روی مصرف گاز شبکه ناچیـز می باشـد ولی با این وجود در صورت استفاده از سیستم های کنترل هوشمند موتورخانه با توجه به افزایش دمای هوا به هنگام ظهر و نیاز گرمایش کمتر در این مقطع زمانی نیز پیک زدایی صورت می پذیرد.

3-2-کنترل مستقیم و از مبداء تجهیزات حرارتی ساختمان :

با اجرای روشهای مختلف بهینه سازی در ساختمانهایی که دارای سیستم حرارت مرکزی می باشند، فرآیند صرفه جویی و کاهش مصرف سوخت نهایتاً منجربه تقلیل زمان کارکرد مشعل ها به دو صورت مستقیم و یا غیر مستقیم می گردد.
در تمامی روشهای بهینه سازی مصرف سوخت، به استثناء سیستمهای کنترل هوشمند، کاهش زمان کارکرد مشعلها بصورت غیرمستقیم و با :

کاهش نرخ افت دمای آب گرم چرخشی، مانند استفاده از عایق های حرارتی در بدنه دیگها، منابع آب گرم مصرفی و سیستمهای لوله کشی گرمایش از کف، مشعل پربازده ، کاهش حجم آب گرم چرخشی در ساختمان، مانند شیر ترموستاتیک رادیاتور.

کاهش توام موارد فوق، مانند پنجره دوجداره، عایق کاری حرارتی سقف و کف دیوارها می باشد.

در صورتیکه سیستم های کنترل هوشمند موتورخانه بطور مستقیم علاوه بر کنترل زمان روشنی-خاموشی مشعلها، پمپهای آب گرم چرخشی را نیز با منطقی هماهنگ و سازگار با برنامه کارکرد مشعل ها، متناسب با تغییرات دمای خارج ساختمان و شرایط مطلوب دمای آب گرم مصرفی کنترل می نماید.

این ویژگی منحصربفرد (کنترل تجهیزات در مبداء) باعث می گردد تا دمای آب گرم چرخشی تنها به اندازه مورد نیاز و تا برقراری شروط مصارف گرمایشی افزایش یابد. در غیراینصورت همواره دمای آب گرم چرخشی در بالاترین حد خود بوده و با اجرای روشهای بهینه سازی در محل مصرف می بایست از اتلاف آن جلوگیری نمود. علاوه بر آن کنترل مستقیم پمپهای آب گرم چرخشی به میزان قابل ملاحظه ای در مصرف انرژی الکتریکی، صرفه جویی شده و هزینه های استهلاک و سرویس-نگهداری نیزبه شدت کاهش می یابند.

4-2- بهینه سازی مضاعف مصرف سوخت در ساعتهای تعطیلی ساختمانهای غیرمسکونی :

قابلیتهای کنترلی سیستم های هوشمند موتورخانه موجب صرفه جویی در مصرف سوخت به دو صورت زیر می گردند :

الف- کنترل مصارف گرمایشی در زمان کارکرد و بهره برداری از موتورخانه

ب- امکان خاموشی و یا آماده باش موتورخانه در دمایی ثابت و پائین پس از ساعت کاری در ساختمانهای غیرمسکونی
ساختمانها به لحاظ کاربری به دو دسته مسکونی و غیرمسکونی (اداری- آموزشی- عمومی- تجاری) تقسیم می شوند در ساختمانهای مسکونی از موتورخانه بصورت پیوسته و دائم به منظور تامین مصارف گرمایشی استفاده می شود و صرفه جویی ناشی از عملکرد سیستم های کنترل هوشمند موتورخانه در این دسته از ساختمانها صرفاً به لحاظ اعمال تغییرات دمای خارج ساختمان و کنترل دمای آب گرم مصرفی می باشد و صرفه جویی در این ساختمانها تا 20% امکان پذیر است.

درساختمانهای غیرمسکونی مانند ادارات و مدارس بدلیل استفاده منقطع و غیرپیوسته از ساختمان امکان خاموشی و یا آماده باش موتورخانه پس ازساعت کاری نیزوجود دارد. بهره برداری ازاین پتانسیل تنها توسط سیستمهای کنترل هوشمند امکان پذیر می باشد. بعنوان مثال در مدرسه ای که ساعت کاری آن از ساعت 7 صبح تا 16 عصر می باشد و جمعه ها نیز تعطیل است، تنها از محل خاموشی موتورخانه پس از ساعت کاری بیش از 55% صرفه جویی حاصل می شود و در صورتیکه صرفه جویی زمان کارکرد موتورخانه نیز به آن اضافه گردد این رقم صرفه جویی به حدود 65% افزایش می یابد.

در سایر روشهای بهینه سازی، صرفه جویی در مصرف سوخت تنها درزمان کارکرد موتورخانه ممکن می باشد و قادر به استفاده از پتانسیل بالای صرفه جویی زمان تعطیلی در ساختمانهای غیرمسکونی نمی باشند.

5-2- صرفه جويي هوشمنـد در پیش راه انـدازی و تسـریع در خـاموشی (یا دمـای آماده باش) موتورخانه ساختمانهای غیرمسکونی:


یکی دیگراز پتانسیلهای قابل ملاحظه صرفه جویی در مصرف سوخت ساختمانهای اداری-آموزشی، استفاده از قابلیتهای هوشمند پیش راه اندازی و تسریع در خاموشی یا آماده باش سیستم های کنترل هوشمند موتورخانه در ساختمانهای غیرمسکونی می باشد. با توجه به اطلاعات ارسالی از سنسور حرارتی که در ضلع شمالی ساختمان نصب شده است، سیستم های کنترل هوشمند قادر می باشند طبق برنامه جدول زمانی و متناسب با سردی هوای خارج ساختمان موتورخانه ها را از چندین ساعت زودتر از ساعت شروع به کار ساختمان روشن و یا از دمای آماده باش به شرایط تابع حرارتی برسانند. همچنین با توجه به دمای هوای خارج ساختمان و در ساعات انتهایی کار ساختمان، تا 1 ساعت زودتر موتورخانه راخاموش و یا به دمای آماده باش می برند که موجب صرفه جویی هوشمند در مصرف سوخت میگردد.

6-2- دوره موثر صرفه جویی و بهینه سازی مصرف سوخت (12 ماه سال) :


سیستم های کنترل هوشمند بر خلاف سایر روشهای بهینه سازی (به استثناء عایق کاری موتورخانه و سیستم های لوله کشی) که تنها در دوره سرما و پنج یا شش ماه سال قادر به صرفه جویی و بهینه سازی مصرف سوخت ساختمان می باشند، بدلیل کنترل دمای آب گرم مصرفی با دو دمای حداقل و حداکثر در طی شبانه روز در تابستانها نیز به میزان قابل ملاحظه ای مصرف سوخت را کاهش می دهند و بدین ترتیب بصورت لحظه ای در 12 ماه سال فعال می باشند.

7-2-زمان مناسب نصب و بهره برداری از سیستم های کنترل هوشمند موتورخانه :


مدت زمان نصب و راه اندازی سیستم های کنترل هوشمند موتورخانه بسیار کوتاه و بطور متوسط در حدود 3 ساعت می باشد که بدون انجام هیچگونه تغییرات مکانیکی در موتورخانه انجام می گردد.

بهمین علت این روش در هر زمان از سال قابل اجرا می باشد و هیچگونه وقفه ای در تامین مصارف گرمایشی ساختمان بوجود نمی آورد.

در دیگر روشهای بهینه سازی این فاکتور عامل محدودکننده ای برای زمان اجرای پروژه می باشد. بعنوان مثال پنجره های دو جداره را نمی توان در فصل سرما و در ساختمانهایی که از آن بهره برداری شده است اجرا نموده یا تعویض شیرهای ترموستاتیک رادیاتور با شیرهای قدیمی در زمستان موجب اختلال چند روزه در گرمایش ساختمان می گردد.

8-2-تثبیت محدوده آسایش حرارتی در ساختمان :


در صورت استفاده از سیستم های کنترل هوشمند موتورخانه بدلیل لحاظ نمودن تغییرات دمای خارج ساختمان بر فرآیند کنترل دمای آب گرم چرخشی دمای داخل ساختمان با دامنه نوسانات محدودی کنترل شده و موجب تثبیت نسبی آسایش حرارتی ساکنین می گردد. البته این ویژگی بصورت دقیق تر در شیرهای ترموستاتیک رادیاتور نیز وجود دارد.




سيستم كنترل هوشمند موتورخانه ....

1:سيستم کنترل هوشمند بايستي قابليت کنترل همزمان آب گرم مصرفي و آب گرم چرخشي ( گرمايشي ) را داشته باشد.

2: اين سيستم بايستي قابليت کنترل دماي آب مورد نياز ساختمان ( دماي آب گرم خروجي از ديگ ) را بر اسـاس دماي محيط خارج از ساختمان مطابق منحني حرارتي مربوطه داشته باشد.(معادله منحني حرارتي ارائه گردد .) بديهي است اين عمل با فرمان on/ off به مشعل (ها) و پمپ (ها) صورت مي‌گيرد.

3: اين سيستم بايستي قابليت برنامه‌ريزي بر اساس ساعت عملکـرد سـاختمان ( بر حسب نوع کاربري ساختمان ) را داشته باشد.

4: قابليت شناسايي هوشمند وضعيت تابستاني/ زمستاني موتورخانه را داشته باشد.

5: اين سيستم داراي قابليت برنامه‌ريزي بر اساس تقويم شمسي کشور باشد.

6: پايانه‌هاي حرارتي ( رادياتور، فن کويل، سيستم گرمايش از کف و ... ) داراي رفتارحرارتي متفاوتي مي‌باشند پس اين سيستم جهت رساندن ساختمان به دماي مورد نظر بايستي داراي منحني حرارتي متناسب با پايانه‌هاي حرارتي باشد.

7: سيستم بايستي داراي انعطاف لازم جهت انتخاب منحني حرارتي متناسب با مصالح بکار رفته در پوسته خارجي ساختمان باشد. ( روش محاسبه و انتخاب منحني ارائه گردد )

8: سيستم قابليت کنترل همزمان حداقل دو مشعل ( دو ديگ ) با دو پمپ را داشته باشد.

9: قابليت سوئيچ كردن بين بين ديگها (مشعلها)متناسب با تقاضاي بار حرارتي ساختمان را داشته باشد .

10: قابليت كنترل دماي آب گرم چرخشي (تا 15C) براي جلوگيري از يخ زدگي(Frost Protection) در ساختمان هاي غير مسكوني واداري را دارا باشد .

11: سيستم مورد نظر داراي قابليت كنترل شيرهاي مخلوط يا سه راهه را داشته باشد

12: سيستم مورد نظر داراي قابليت كنترل آبگرم خورشيدي را داشته باشد .

13: سيستم مورد نظر داراي قابليت برنامه ريزي جهت احتياط در مقابل ويروس لژيونلا (Legionela) باشد .

14: سيستم پيشنهادي بايستي داراي قابليت نمايش به زبان فارسي و انگليسي باشد و دماها برحسب سلسيوس نمايش داده شود.

 

 

در ساختمان هوشمند منابع نور اعم از چراغ سقفی، ديواری، روميزی، چراغهای رنگی تزئينی، فلورسنت و لامپهای LED همگی به تفكيك يا گروهی قابل كنترل هستند.با این روش ميتوان بدون نياز به سرکشی به تمامی چراغها از وضعيت تك تك آنها اطلاع حاصل نمود و آنها را "روشن-خاموش" يا "Dim" كرد.

 

سيستم ايمنی

 

ساختمان هوشمند قابليت مديريت سيستم دزدگير، دوربينهای مداربسته و حسگر اثر انگشت (Biometric System) را داراست. از مزيتهای اصلی ميتوان دقت بالا، قابليت کنترل از راه دور، امکان ارسال SMS بروی تلفن همراه ، منطقه بندی فضای تحت پوشش (Zone) و تشخيص دود و آب گرفتگی را نام برد.

مطالعه بیشتر...

اهميت و حساسيت بحث تهويه مطبوع در بيمارستان سبب شده است که طراحي تاسيسات مکانيکي آن را از پيچيدگي خاصي برخوردار باشد . در نتيجه دقت در محاسبات و رعايت اصول استانداردهاي بين المللي که در مورد بيمارستانها وضع شده است بايستي دقيقا مد نظر تاسيسات باشد، از طرفي بحث درمان بيمار در کنار ايجاد شرايط آسايش انسانها نيز از نکات اساسي تهويه مطبوع در بيمارستان است .

تهويه مطبوع

تمامي فضاهاي يک بيمارستان اعم از اتاقهاي عمل ، جراحي ، ريکاوري ، بخش هاي بستري ، آزمايشگاهها و ... نياز به گرمايش در زمستان و سرمايش در تابستان را دارند . دما و درصد رطوبت و نياز هواي تازه در بعضي از فضاها داراي اهميت زيادي است و در بعضي ديگر از فضاها داراي اهميت خاصي نيست . براي آشنايي با نحوه طراحي و انتخاب سيستم هاي مناسب تهويه مطبوع در بيمارستان ابتدا بايستي با مباني طرح آشنا شويم .

مطالعه بیشتر...

مبدلهای اولیه از یکسوسازهای کنترلشده سیلیکونی (Silicon Controlled Rectifier: SCR)برای تغییر حالت روشن/خاموش بمنظور تولید خروجی استفاده میکردند. بعدها ترانزیستورهای دوقطبی جایگزین SCRها شدند. از آنجائیکه سرعت برانگیختگی دوقطبیها خیلی بیشتر است ماحصل استفاده از آنها، بهبود خروجی و کاهش هارمونیکها بود. ورود ترانزیستورهای دوقطبی با گیت عایقدار (Insulated Gate Bipolar Transistor: IGBT)خیز به جلوی بزرگی را منجر گردید. امروزه آنها استاندارد درایوهای PWMهستند که هم جایگزین SCRها و هم ترانزیستورهای دوقطبی شدهاند.

 

با تغییر حالت روشن/خاموش گذرگاه DCدر فاصلههای زمانی مشخص، IGBTها به مبدل اجازه میدهند که پالس خروجی با پهنا و فاصله بینابین متفاوت ساخته شود. مرکز کنترل درایو، زمان روشن یا خاموش بودن IGBTها را تنظیم میکند. این زمانسنجی، ولتاژ و فرکانس خروجی را تعیین میکند.

 

فرکانس حامل (یا فرکانس سویچینگ) عبارتی است که به سرعت این تغییر حالت روشن/خاموش اطلاق میگردد. هرچه فرکانس تغییر حالت بالاتر باشد به همان میزان تفکیکپذیری و دقت بیشتری در هر پالس ولتاژ خواهیم داشت. درایوهای قدیمی مبتنی بر SCRدارای دقتی تا 500 بار در ثانیه بودند در حالیکه سرعت تغییر حالت انواع IGBTها به 4000 بار در ثانیه میرسد.

مطالعه بیشتر...

یک تصویر یک خاطره

جدید ترین اخبار

حاضرین در سایت

ما 19 مهمان و بدون عضو آنلاین داریم

ورود به سایت